Inverse scattering with fixed energy and an inverse eigenvalue problem on the half-line

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Scattering with Fixed Energy and an Inverse Eigenvalue Problem on the Half-line

Recently A. G. Ramm (1999) has shown that a subset of phase shifts δl, l = 0, 1, . . ., determines the potential if the indices of the known shifts satisfy the Müntz condition ∑ l =0,l∈L 1 l = ∞. We prove the necessity of this condition in some classes of potentials. The problem is reduced to an inverse eigenvalue problem for the half-line Schrödinger operators.

متن کامل

Inverse scattering problem with fixed energy and fixed incident direction

Let A q (α ′ , α, k) be the scattering amplitude, corresponding to a local potential q(x), x ∈ R 3 , q(x) = 0 for |x| > a, where a > 0 is a fixed number, α ′ , α ∈ S 2 are unit vectors, S 2 is the unit sphere in R 3 , α is the direction of the incident wave, k 2 > 0 is the energy. We prove that given an arbitrary function f (α ′) ∈ L 2 (S 2), an arbitrary fixed α 0 ∈ S 2 , an arbitrary fixed k ...

متن کامل

Inverse Resonance Scattering on the Half Line

For the Schrr odinger operator on the half line we prove the following results: the mapping from real compactly supported potentials to the associated Jost functions (in some class of entire functions) is one-to-one and onto. Moreover, we prove that such potential is uniquely determined by its bound states and resonances.

متن کامل

Fixed-energy inverse scattering

The author’s method for solving inverse scattering problem with fixed-energy data is described. Its comparison with the method based on the D-N map is given. A new inversion procedure is formulated. c © 2008 Elsevier Ltd. All rights reserved. MSC: 35R30; 47H17; 65M30; 81U05 PACS: 03.80.+r.; 03.65.Nk

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2006

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-06-03996-1